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Letters
Synthesis of a �twisted� transition-state analogue of biotin
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Abstract—A facile, racemic synthesis of a �twisted� transition-state analogue of biotin is described. A key reaction is the electron-
ically assisted ring-closure of the sulfur containing ring by displacement of an in situ generated mesylate by a suitably positioned
4-methoxybenzyl sulfide. The crystal structure of tricyclic compound 6 shows the AB ring system to indeed be twisted. The �twist�
was introduced to examine the possible involvement of sulfur participation in biotin biochemistry.
� 2003 Elsevier Ltd. All rights reserved.
The question of whether sulfur participates in biotin
biochemistry via a transannular interaction has attracted
the interest of several research groups over the years.1;2

The idea is that such an interaction could (a) increase the
nucleophilicity of N1 thereby facilitating attack by N1
onto the �CO2 equivalent�; either carboxyphosphate or
CO2 itself and (b) avoid the formation of a ureide anion
intermediate. Despite considerable effort to find experi-
mental evidence for such an interaction, the general
consensus is that it probably doesn�t exist.3
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We recently reported a molecular orbital (MO) study
that suggested that during the first half-reaction of
biotin-dependent enzyme-catalyzed carboxylations, sul-
fur could enhance the nucleophilicity of N1 via a com-
bined through-bond/through-space interaction between
sulfur and the urea.4 This interaction could occur if, in
the transition-state for biotin carboxylation, the enzyme
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stabilized a conformation of biotin that broke the
symmetry of the bicyclic portion of the molecule by
pulling the sulfur off of the centerline of ring A. This
distortion, or �twist�, results in net overlap, in the form
of a 2-orbital/4 electron destabilizing interaction,
between sulfur and the ureido moiety.

To find experimental evidence for this through-bond/
through-space interaction, what was needed was a
molecule whose AB ring structure was permanently
twisted in its ground state. Examination of hand held
models and some preliminary modeling suggested that
incorporation of a six-membered ring as in 1 below
would induce the appropriate twist. As 1 has structural
characteristics of potential interest to a wider audience,
we wish to report an efficient synthesis of racemic 1. An
analysis of the crystal structure of the thiooxazolidone
precursor 6 shows the molecule to indeed be twisted.
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The synthesis of 1 was fashioned after Volkmann�s
synthesis of biotin.5 Hence, the oxazolidone ring would
be formed via the addition of the anion of ethyl iso-
thiocyanatoacetate to a suitably a-thio-functionalized
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cyclohexanone. Unmasking of the thiol and suitable
manipulation of the ester would hopefully lead to clo-
sure of ring-B, assuming addition of the isothiocyanate
to the ketone would yield at least some of the desired
diastereomer. The choice of a suitable protecting group
for the thiol then became the main issue.

We eventually settled on the use of a benzyl group, more
out of convenience than foresight, but the choice proved
to be a useful one. We initially synthesized a-S-benzyl-
cyclohexanone 2a via displacement of bromine from
a-bromocyclohexanone with the anion of benzyl
mercaptan. However we found the synthesis of
a-bromocyclohexanone troublesome, and as shown in
Scheme 1 we adopted the methodology of Scholz,6

wherein a-S-benzylcyclohexanone is prepared in one
step from the enolate of cyclohexanone and the thio-
lating agent S-benzyl 4-methylbenzenethiosulfonate 3a.
Reagent 3a is prepared from potassium thiotosylate and
benzyl chloride in DMF. With a convenient preparation
of a key starting material in hand, the synthesis pro-
ceeded as outline in Scheme 1.

Treatment of ethyl isothiocyanatoacetate with an
equivalent of lithium bis-(trimethylsilyl)amide in THF
at )78 �C generated the anion, which added smoothly to
a-S-benzylcyclohexanone to give a 60:40 separable
mixture of stereoisomers, the major one proving even-
tually to be the desired diastereomer 4a. The ester group
of 4a was reduced with NaBH4 in THF/MeOH (9:1) at
room temperature over a period of several hours to give
alcohol 5a in moderate yield. Treatment of 5a with a
slight excess of methanesulfonyl chloride in pyridine as
solvent yielded the tricyclic thiooxazolidone 6 directly,
without isolation of the mesylate, again in moderate
yield, over a period of several hours.7

We were delighted at this one step ring closure, but
overall yields were low. Hand held models of the alcohol
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Scheme 1.
5a showed that the sulfide is ideally positioned to dis-
place the mesylate as soon as it is formed. It seemed
reasonable that an electron donating group on the
aromatic group would accelerate this intramolecular
ring closure. We therefore decided to run through the
synthesis again with a methoxy group in the para posi-
tion.

The requisite thiolating agent 3b was obtained by stir-
ring 4-methoxybenzyl chloride with potassium thio-
tosylate in DMF for 12 h at room temperature.
Treatment of the enolate of cyclohexanone with 3b
yielded 2b, which had the advantage over 2a in that it
crystallized from ether, thus avoiding a chromato-
graphic step.8 The anion of ethyl isothiocyanatoacetate
added to ketone 2b again yielding a 60:40 mixture of
diastereomers.9 Fortuitously, the major desired isomer
4b crystallized from an ether solution of the crude
worked-up reaction in 50% overall yield. The remaining
10% can be recovered by column chromatography.

The stereochemistry of the minor isomer was eventually
shown by X-ray analysis of a single crystal to be 4c as
indicated in Scheme 1. This result shows that the iso-
thiocyanate added with complete facial selectivity to the
hydrogen side of ketone 2b.

Reduction of ester 4b with NaBH4 again seemed slug-
gish, but fresh LiBH4 in THF/MeOH (9:0) reduced the
ester cleanly to the alcohol 5b within minutes.10 Treat-
ment of 5b in pyridine with a slight excess of methane-
sulfonyl chloride gave the desired ring-closed product 6
cleanly within 10min, thus confirming our hunch that
the 4-methoxy group would accelerate the reaction.11

The sulfur/oxygen exchange was again taken from
Volkmann.5 Heating thiooxazolidone 6 with 2-bromo-
ethanol in DMF at 100 �C for 2 h, followed by addition
of 6M KOH and stirring at 50 �C for an additional 2 h
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Figure 1. Crystal structure of thiooxazolidone 6.
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yielded 1 in variable yields ranging from 40–100%.13

Starting material and product are conveniently sepa-
rated on silica gel using CH2Cl2:acetone (20:1) as eluent.
Yields based on recovered starting material were greater
than 90%.

We were unable to grow suitable crystals of 1, but
crystals of thiooxazolidone 6 (mp¼ 223 �C) were
obtained via slow evaporation of chloroform at room
temperature. As shown in Figure 1, X-ray analysis12

confirmed the overall structure and revealed the precise
nature of the twist.

A key indicator of the twist is the dihedral angle N(10)–
C(3)–C(3A)–O(8)¼)13� obtained from the X-ray data.
The equivalent dihedral in biotin17 (N(1)–C(4)–C(3)–
N(3)) is essentially 0�. In dethiobiotin18 it is +22� and in
oxybiotin19 it is )12�. It has been suggested that a pos-
sible role for sulfur in biotin is to maintain the planarity
of the 2-imidazolidone ring18 for the purpose of pre-
venting N1-carboxybiotin from spontaneously decarb-
oxylating.20 Compound 6 then has sulfur in ring-B but is
twisted (presumably 1 is as well), which satisfies our
definition4 of a transition-state analogue for the car-
boxylation of biotin. We are interested to know whether
that twist translates into unique chemistry at nitrogen.

A consequence of the twist can be appreciated from a
comparison of the S(1)–O(8), S(1)–C(9), and S(1)–N(10)
bond distances obtained from the X-ray data of 6
(3.1043, 3.3905, 3.5289�A, respectively) with the corre-
sponding distances obtained from the energy minimized
structure (6-31G�) of the nontwisted bicyclic analogue
that lacks the six-membered ring (3.2920, 3.3605,
3.6501�A, respectively). The S(1)–O(8) and S(1)–N(10)
distances are similar in the nontwisted structure. The
same distances in the X-ray structure show that S(1) has
moved closer to the oxygen and further from nitrogen.
Also, S(1) has moved closer to the thiocarbonyl carbon;
3.5289�A versus 3.6541�A for the nontwisted structure.
The N–C–C–O dihedral angle in the nontwisted struc-
ture is essentially 0� as in biotin. Therefore, the effect of
adding the six-membered ring is to twist the AB ring
portion of the molecule ()13� dihedral) moving the
sulfur in ring-B up and over to the left relative to ring-A.

Assuming the structures of 1 and 6 are similar, we are
currently in the process of studying 1 and some related
compounds to determine what effect the �twist� has in
terms of chemical reactivity at nitrogen, and these
results will be reported shortly. As mentioned, the overall
goal is to examine the possibility that sulfur could par-
ticipate in biotin biochemistry via a combined through-
bond/through-space interaction between sulfur and N1
that operates at the transition-state for carboxylation.4
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